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Answer all the questions.

1	 In this question, give all non-real numbers in the form reii where 0r 2  and 0 21 1i r .

	 (i)	 Solve 1z5 = . [2]

	 (ii)	 Hence, or otherwise, solve 32 0z5 + = . Sketch an Argand diagram showing the roots. [4]

2	 Find the shortest distance between the lines 
2

1

0

1

2

1

r m= +
-

f fp p and 
1

1

2

3

0

1

r n=
-
+f fp p. [4]

3	 The differential equation

2 1

y y
x
x
y

xd

d

2 2
- =

	 is to be solved subject to the condition 1y =  when 1x = .

	 (i)	 Show that 1y u=  transforms the differential equation into

    2
1x x

u u
xd

d
2

+ = . [3]

	 (ii)	 Find y in terms of x. [7]

4	 Let A be the set of non-zero integers.

	 (i)	 Show that A does not form a group under multiplication. [2]

	 (ii)	 State the largest subset of A which forms a group under multiplication. Show that this is a group. [3]

5	 Find the general solution of the differential equation

    2 10 85cos
x
y

x
y y x

d

d

d

d

2

2

+ + = . [8]

6	 The planes 1P  and 2P  have equations

    
1

2

1

3r. =f p  and 
2

1

4

5r. =f p
 respectively. They intersect in the line l.

	 (i)	 Find cartesian equations of l. [4]

	 The plane 3P  has equation .
1

5

1

1r
-
=f p .

	 (ii)	 Show that 3P  is parallel to l but does not contain it. [3]

	 (iii)	 Verify that 2,0,1^ h lies on planes 1P  and 3P . Hence write down a vector equation of the line of 
intersection of these planes. [3]



3

4727/01 Jun16© OCR 2016

7	 (i)	 Use de Moivre’s theorem to show that

    6 6 32 32sin cos sin sin sin
3 5/i i i i i- +^ h. [5]

	 (ii)	 Hence show that, for 2 0sin !i ,

    1
2

6
3

sin

sin 1G
i
i- . [7]

8	 A non-commutative multiplicative group G of order eight has the elements

    { , , , , , , , }e a a a b ab a b a b2 3 2 3 ,

 where e is the identity and a b e4 2= = .

	 (i)	 Show that ba an!  for any integer n. [2]

	 (ii)	 Prove, by contradiction, that ba a b2!  and also that ba ab! . Deduce that ba a b3= . [6]

	 (iii)	 Prove that ba a b2 2= . [2]

	 (iv)	 Construct group tables for the three subgroups of G of order four. [7]

END	OF	QUESTION	PAPER
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Question Answer Marks Guidance 
1 (i)  𝑧 = 1, e2𝜋𝑖/5, e4𝜋𝑖/5, e6𝜋𝑖/5, e8𝜋𝑖/5  M1 e2𝜋𝑖/5 soi  
    A1   
    [2]   
 (ii)  𝑧5 = −32 has a root −2, so roots are M1 Use part (i) or from scratch  
   −2, −2e2𝜋𝑖/5, −2e4𝜋𝑖/5, −2e6𝜋𝑖/5, −2e8𝜋𝑖/5     
   

Roots  −2, 2e7𝜋𝑖/5, 2e9𝜋𝑖/5, 2e𝜋𝑖/5, 2e3𝜋𝑖/5 A1 cao with 𝑟 > 0, 0 < 𝜃 < 2𝜋 
(allow 2e𝜋𝑖 for −2)  

   Argand diagram M1 one root in each quadrant plus one on real 
axis  

    A1 axes and roots labelled. Roots equal moduli 
and equiangular spacing  

    [4]   
2   

(
1
2

−1
) × (

3
0
1

) = (
2

−4
−6

) = −2 (
−1
2
3

)  M1 at least 2 correct values for the cross product 
or method shown  

    A1 Any multiple  
   

(
2
1
0

) − (
−1
1
2

) = (
3
0

−2
)     

   

Shortest distance =
|(

3
0

−2
)∙(

−1
2
3

)|

√12+22+32   
M1   

   = 9
√14

  or 2.41  A1   
    [4]   
3 (i)  d𝑦

d𝑥
= −𝑢−2 d𝑢

d𝑥
  M1 Differentiate  

   2𝑢 − 𝑥𝑢2 (−𝑢−2 d𝑢
d𝑥

) = 1
𝑥2  M1 Substitute  

   𝑥 d𝑢
d𝑥

+ 2𝑢 = 1
𝑥2  A1 ag Convincingly shown  

    [3]   
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(ii)  d𝑢
d𝑥

+ 2𝑢
𝑥

= 1
𝑥3     

   𝐼 = exp (∫ 2
𝑥

d𝑥) = e2 ln 𝑥  M1 e𝑘 ln 𝑥   
   = 𝑥2  A1  incorrect IF means no further marks 

can be gained 
   d

d𝑥
(𝑥2𝑢) = 𝑥−1  M1 for LHS, multiply and recognise derivative if RHS is not multiplied by IF then no 

further marks can be gained 
   𝑥2𝑢 = ln 𝑥 + 𝐴  A1  or  … = 𝑙𝑛𝑘𝑥 
   𝑢 = (ln 𝑥 + 𝐴)/𝑥2     
   𝑦 = 𝑥2/(ln 𝑥 + 𝐴)  M1 for y = reciprocal of ‘their u’  
   𝑥 = 1, 𝑦 = 1 ⇒ 1 = 1

0+𝐴
⇒ 𝐴 = 1  M1  or 𝑘 = 𝑒 

   𝑦 = 𝑥2

ln 𝑥+1
   A1 oe without fractions within fractions or 𝑦 = 𝑥2

ln 𝑒𝑥
 

    [7]   
4 (i)  ∀𝑛, 1𝑛 = 𝑛1 = 𝑛 so 1 is identity M1 Identify identity can be implicit for M1 
   But not all integers have an inverse, e.g. 

2𝑛 ≠ 1 for any 𝑛 A1 Complete argument (example or general)  

    [2]   
 (ii)  {−1,1}  B1*   
   Demonstrates closure, 

 references associativity 
references identity 

 ...without contradiction  

   (−1)−1 = −1  (and 1−1 = 1) so inverses *B2 B1 for any two of these  
    [3] Dep on 1st B1  
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5 AE:  𝜆2 + 2𝜆 + 10 = 0 B1 
   𝜆 = −1 ± 3𝑖  B1   
   CF:  e−𝑥(𝐴 cos 3𝑥 + 𝐵 sin 3𝑥) B1ft condone ( 1 3 ) ( 1 3 )i x i xAe Be� � � ��  ft on complex λ only 
   PI:   𝑦 = 𝑎 cos 𝑥 + 𝑏 sin 𝑥 B1  trial function 𝑦 = 𝑎 cos 𝑥 scores max 

of B0 M1 M0 at this stage 
   𝑦′ = −𝑎 sin 𝑥 + 𝑏 cos 𝑥     
   𝑦′′ = −𝑎 cos 𝑥 − 𝑏 sin 𝑥     
   In DE:  −𝑎 cos 𝑥 − 𝑏 sin 𝑥 + 2(−𝑎 sin 𝑥 +

𝑏 cos 𝑥) + 10(𝑎 cos 𝑥 + 𝑏 sin 𝑥) = 85 cos 𝑥 M1* Differentiate twice and substitute  

   −𝑎 + 2𝑏 + 10𝑎 = 85  M1* Compare coefficients  
   −𝑏 − 2𝑎 + 10𝑏 = 0     
   𝑎 = 9, 𝑏 = 2  A1 PI correct  
   GS:  𝑦 = 9 cos 𝑥 + 2 sin 𝑥 

+e−𝑥(𝐴 cos 3𝑥 + 𝐵 sin 3𝑥) *A1ft Their CF (of standard form) + their PI dep on gaining both M1 marks 

    [8]   
6 (i)  

(
1
2
1

) × (
2
1
4

) = (
7

−2
−3

) 

 
finds point on both planes 
 

𝑥
−7

=
𝑦 − 1

2
=

𝑧 − 1
3

 

M1A1 
 
 
B1 
 
 
A1 
       [4] 

 
 
 
 
e.g. (0,1,1) 
 
 
oe 

 
or (7

3
, 1

3
, 0) or (7

2
, 0, − 1

2
) 

 ALT  𝑥 + 2𝑦 + 𝑧 = 3     
   2𝑥 + 𝑦 + 4𝑧 = 5   

   

   3𝑥 + 7𝑧 = 7  M1 
A1 

Attempts to find at least 1 equation 
2 correct equations   

   2𝑥 + 7𝑦 = 7    or 3𝑦 − 2𝑧 = 1 
       

   𝑥
−7

= 𝑦−1
2

= 𝑧−1
3

  M1A1 
[4] 

oe of the form f(x) = g(y)= h(z)  
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(ii) 
 

(
−7
2
3

) ∙ (
1
5

−1
) = −7 + 10 − 3 = 0  

⇒ 𝑙 ∥ Π3 

M1 
 
A1 

 
For scalar product, either shows method or 
gives answer of zero 
for A1 must have working out line for scalar 
product 

 

   
(0, 1, 1) is on line, but (

0
1
1

) ∙ (
1
5

−1
) = 4 ≠ 1 

so not on plane B1   [3] 
  

 ALT  𝑥 + 5𝑦 − 𝑧 = 1 
7𝜆 + 5(1 − 2𝜆) − (1 − 3𝜆) = 1 

 
⇒ 4 = 1 inconsistent, so l is parallel and not 
on plane 
 

M1A1 
 
A1 
 
 

  

    [3]   
 (iii)  2 + 2 × 0 + 1 = 3 (so on Π1)   must show working for at least one 

plane 
   

(
2
0
1

) ∙ (
1
5

−1
) = 1 (so on Π3) B1 Verify both  

   
Line has equation 𝐫 = (

2
0
1

) + 𝜆 (
−7
2
3

) M1 
A1 

 
oe vector form 
in cartesian form M1 only 

if cross product calculated incorrectly 
then M0A0 

    [3]   
7 (i)  cos 6𝜃 + 𝑖 sin 6𝜃 = (cos 𝜃 + 𝑖 sin 𝜃)6  B1 Use de Moivre or sin 6𝜃 = 𝐼𝑚(cos 𝜃 + 𝑖 sin 𝜃)6 
   = cos6 𝜃 + 6𝑖 sin 𝜃 cos5 𝜃 − 15 sin2 𝜃 cos4 𝜃

− 20𝑖 sin3 𝜃 cos3 𝜃 + 15 sin4 𝜃 cos2 𝜃
+ 6𝑖 sin5 𝜃 cos 𝜃 − sin6 𝜃 

 
B1 

 
All terms correct  

   sin 6𝜃 = 6 sin 𝜃 cos5 𝜃 − 20 sin3 𝜃 cos3 𝜃
+ 6 sin5 𝜃 cos 𝜃 M1 Compare imaginary parts  

   = cos 𝜃 (6 sin 𝜃 (1 − sin2 𝜃)2 −
20 sin3 𝜃 (1 − sin2 𝜃) + 6 sin5 𝜃)  M1 Take out factor of cos 𝜃 and give other factor 

in terms of sin 𝜃only  

   = cos 𝜃 (32 sin5 𝜃 − 32 sin3 𝜃 + 6 sin 𝜃)   A1   
[5] 

ag Convincingly shown, having been explicit 
about taking imaginary parts must have sin 6𝜃 = ⋯’final line’ 



4727 Mark Scheme June 2016 

11 

Question Answer Marks Guidance 
       
 (ii)  sin 6𝜃

sin 2𝜃 =
cos 𝜃 (32 sin5 𝜃 − 32 sin3 𝜃 + 6 sin 𝜃)

2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃  

= 16 sin4 𝜃 − 16 sin2 𝜃 + 3  
M1   

    M1 Complete the square  
   = 4(2 sin2 𝜃 − 1)2 − 1  

A1  
M1A1 for showing stationary points 
occur when 𝑠𝑖𝑛2𝜃 = 0,1 𝑜𝑟 1

2
  

 
   ∴ sin 6𝜃

sin 2𝜃
≥ −1  

M1 deduces lower bound 
if using calculus, must convince for 
nature of stationary points for each M1 
here 

   0 ≤ 2 sin2 𝜃 ≤ 2 
∴ (2 sin2 𝜃 − 1)2 ≤ 1 

 
 

∴ 4(2 sin2 𝜃 − 1)2 − 1 ≤ 3 

M1 deduces upper bound can omit line 1or 2 from the workings 
here, but not for final A mark 

   ⇒ −1 ≤ sin 6𝜃
sin 2𝜃

≤ 3  
 

SC if none of marks 2 to 5 (M1A1M1M1) 
gained then SC M1A1 for any valid method 
of deducing upper bound, and similarly for 
lower bound 

 

   But upper bound attained ⇒ sin2 𝜃 = 0 or 1    
   ⇒ sin 2𝜃 = 0  M1 Dep on showing valid method for UB<=3 Or independent proof that not equal to 

3 
   So sin 2𝜃 ≠ 0 ⇒ −1 ≤ sin 6𝜃

sin 2𝜃
< 3 A1 full convincing overall argument  

    [7]   
  



4727 Mark Scheme June 2016 

12 

Question Answer Marks Guidance 
8 (i)  𝑏𝑎 = 𝑎𝑛 ⇒ 𝑏 = 𝑎𝑛−1  M1   
   But these are distinct elements so 𝑏𝑎 ≠ 𝑎𝑛 A1   
    [2]   
 (ii)  𝑏𝑎 = 𝑎2𝑏     
   ⇒ 𝑎2𝑏𝑎 = 𝑎4𝑏     
   ⇒ 𝑎2𝑏𝑎 = 𝑏  

M1 or 2 3b a ba  , 2a ba b  , 2a bab  or 
2b ba  

 

   ⇒ 𝑎2𝑏𝑎4 = 𝑏𝑎3     
   ⇒ 𝑎2𝑏 = 𝑏𝑎3     
   ⇒ 𝑏𝑎 = 𝑏𝑎3     
   ⇒ 𝑒 = 𝑎2  M1 validly reach any equality which gives 2 

distinct elements of the group as equal  

   Which is false, hence 𝑏𝑎 ≠  𝑎2𝑏 A1 Complete argument  
   If 𝑏𝑎 = 𝑎𝑏 then (all element pairs would have 

to be commutative and so) G would be 
abelian. 

M1 Do not award for G non-abelian ⇒ 𝑏𝑎 ≠ 𝑎𝑏  

   If 𝑏𝑎 = 𝑏 then 𝑎 = 𝑒 so 𝑏𝑎 ≠ 𝑏. M1   
   So, by elimination of other possibilities,    
   𝑏𝑎 = 𝑎3𝑏 A1 Dependent on all previous marks  
    [6]   
 (iii)  𝑏𝑎2 = 𝑏𝑎𝑎 = 𝑎3𝑏𝑎  M1 Use previous result  
   = 𝑎3𝑎3𝑏 = 𝑎2𝑏  A1 Complete argument  
    [2]   
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 (iv)   𝑒 𝑎 𝑎2 𝑎3 

𝑒 𝑒 𝑎 𝑎2 𝑎3 
𝑎 𝑎 𝑎2 𝑎3 𝑒 

𝑎2 𝑎2 𝑎3 𝑒 𝑎 
𝑎3 𝑎3 𝑒 𝑎 𝑎2 

 

B1 All correct  
      
      
      
      
      
       
    𝑒 𝑎2 𝑏 𝑎2𝑏 

𝑒 𝑒 𝑎2 𝑏 𝑎2𝑏 
𝑎2 𝑎2 𝑒 𝑎2𝑏 𝑏 
𝑏 𝑏 𝑎2𝑏 𝑒 𝑎2 

𝑎2𝑏 𝑎2𝑏 𝑏 𝑎2 𝑒 
 

B1 Correct elements  
   M1 At least 12 out of 16 entries correct  
   A1 All correct  
      
      
      
       
    𝑒 𝑎2 𝑎𝑏 𝑎3𝑏 

𝑒 𝑒 𝑎2 𝑎𝑏 𝑎3𝑏 
𝑎2 𝑎2 𝑒 𝑎3𝑏 𝑎𝑏 
𝑎𝑏 𝑎𝑏 𝑎3𝑏 𝑒 𝑎2 

𝑎3𝑏 𝑎3𝑏 𝑎𝑏 𝑎2 𝑒 
 

B1 Correct elements  
   M1 At least 12 out of 16 entries correct  
   A1 All correct  
      
      
      
    [7]   
   Total 72   
 


