

# Friday 17 June 2016 – Afternoon

# **A2 GCE MATHEMATICS**

4727/01 Further Pure Mathematics 3

#### **QUESTION PAPER**

Candidates answer on the Printed Answer Book.

#### OCR supplied materials:

- Printed Answer Book 4727/01
- List of Formulae (MF1) Other materials required:

Duration: 1 hour 30 minutes

Scientific or graphical calculator

## **INSTRUCTIONS TO CANDIDATES**

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer **Book**. If additional space is required, you should use the lined page(s) at the end of the Printed Answer Book. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

#### **INFORMATION FOR CANDIDATES**

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

#### INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

#### Answer all the questions.

- 1 In this question, give all non-real numbers in the form  $re^{i\theta}$  where r > 0 and  $0 < \theta < 2\pi$ .
  - (i) Solve  $z^5 = 1$ . [2]
  - (ii) Hence, or otherwise, solve  $z^5 + 32 = 0$ . Sketch an Argand diagram showing the roots. [4]

2 Find the shortest distance between the lines 
$$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 and  $\mathbf{r} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$ . [4]

**3** The differential equation

$$\frac{2}{y} - \frac{x}{y^2}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x^2}$$

is to be solved subject to the condition y = 1 when x = 1.

(i) Show that  $y = \frac{1}{u}$  transforms the differential equation into

$$x\frac{\mathrm{d}u}{\mathrm{d}x} + 2u = \frac{1}{x^2}.$$
[3]

- (ii) Find y in terms of x.
- 4 Let *A* be the set of non-zero integers.
  - (i) Show that *A* does not form a group under multiplication. [2]
  - (ii) State the largest subset of A which forms a group under multiplication. Show that this is a group. [3]
- 5 Find the general solution of the differential equation

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 10y = 85\cos x.$$
 [8]

6 The planes  $\Pi_1$  and  $\Pi_2$  have equations

$$\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 3 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} = 5$$

respectively. They intersect in the line *l*.

(i) Find cartesian equations of *l*.

The plane  $\Pi_3$  has equation  $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix} = 1$ .

- (ii) Show that  $\Pi_3$  is parallel to *l* but does not contain it.
- (iii) Verify that (2,0,1) lies on planes  $\Pi_1$  and  $\Pi_3$ . Hence write down a vector equation of the line of intersection of these planes. [3]

[3]

[4]

[7]

7 (i) Use de Moivre's theorem to show that

$$\sin 6\theta \equiv \cos \theta (6\sin \theta - 32\sin^3 \theta + 32\sin^5 \theta).$$
 [5]

(ii) Hence show that, for  $\sin 2\theta \neq 0$ ,

$$-1 \leqslant \frac{\sin 6\theta}{\sin 2\theta} < 3.$$
 [7]

[7]

8 A non-commutative multiplicative group G of order eight has the elements

$$\{e, a, a^2, a^3, b, ab, a^2b, a^3b\},\$$

where *e* is the identity and  $a^4 = b^2 = e$ .

- (i) Show that  $ba \neq a^n$  for any integer *n*. [2]
- (ii) Prove, by contradiction, that  $ba \neq a^2b$  and also that  $ba \neq ab$ . Deduce that  $ba = a^3b$ . [6]
- (iii) Prove that  $ba^2 = a^2b$ . [2]
- (iv) Construct group tables for the three subgroups of G of order four.

#### **END OF QUESTION PAPER**

## Mark Scheme

June 2016

| Q | Question | Answer                                                                                                                                                                      | Marks     | Guidance                                                               |  |  |
|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|--|--|
| 1 | (i)      | $z = 1, e^{2\pi i/5}, e^{4\pi i/5}, e^{6\pi i/5}, e^{8\pi i/5}$                                                                                                             | M1<br>A1  | $e^{2\pi i/5}$ soi                                                     |  |  |
|   | (ii)     | $z^5 = -32$ has a root $-2$ , so roots are<br>-2, $-2e^{2\pi i/5}$ , $-2e^{4\pi i/5}$ , $-2e^{6\pi i/5}$ , $-2e^{8\pi i/5}$                                                 | [2]<br>M1 | Use part (i) or from scratch                                           |  |  |
|   |          | Roots $-2, 2e^{7\pi i/5}, 2e^{9\pi i/5}, 2e^{\pi i/5}, 2e^{3\pi i/5}$                                                                                                       | A1        | cao with $r > 0, 0 < \theta < 2\pi$<br>(allow $2e^{\pi i}$ for $-2$ )  |  |  |
|   |          | Argand diagram                                                                                                                                                              | M1        | one root in each quadrant plus one on real<br>axis                     |  |  |
|   |          |                                                                                                                                                                             | A1        | axes and roots labelled. Roots equal moduli<br>and equiangular spacing |  |  |
| 2 |          | $\begin{pmatrix} 1\\2\\-1 \end{pmatrix} \times \begin{pmatrix} 3\\0\\1 \end{pmatrix} = \begin{pmatrix} 2\\-4\\-6 \end{pmatrix} = -2 \begin{pmatrix} -1\\2\\3 \end{pmatrix}$ | [4]<br>M1 | at least 2 correct values for the cross product<br>or method shown     |  |  |
|   |          | $\begin{pmatrix} 2\\1\\0 \end{pmatrix} - \begin{pmatrix} -1\\1\\2 \end{pmatrix} = \begin{pmatrix} 3\\0\\-2 \end{pmatrix}$                                                   | A1        | Any multiple                                                           |  |  |
|   |          | Shortest distance = $\frac{\begin{vmatrix} 3\\0\\-2 \end{vmatrix} \cdot \begin{pmatrix} -1\\2\\3 \end{vmatrix}}{\sqrt{1^2 + 2^2 + 3^2}}$                                    | M1        |                                                                        |  |  |
|   |          | $=\frac{9}{\sqrt{14}}$ or 2.41                                                                                                                                              | A1<br>[4] |                                                                        |  |  |
| 3 | (i)      | $\frac{\mathrm{d}y}{\mathrm{d}x} = -u^{-2}\frac{\mathrm{d}u}{\mathrm{d}x}$                                                                                                  | M1        | Differentiate                                                          |  |  |
|   |          | $\frac{dy}{dx} = -u^{-2}\frac{du}{dx}$ $2u - xu^{2}\left(-u^{-2}\frac{du}{dx}\right) = \frac{1}{x^{2}}$ $x\frac{du}{dx} + 2u = \frac{1}{x^{2}}$                             | M1        | Substitute                                                             |  |  |
|   |          | $x\frac{\mathrm{d}u}{\mathrm{d}x} + 2u = \frac{1}{x^2}$                                                                                                                     | A1        | ag Convincingly shown                                                  |  |  |
|   |          |                                                                                                                                                                             | [3]       |                                                                        |  |  |

|   | Question         | Answer                                                                                                                                                                                                                                                                                                                             | Marks                                  | Guidance                                                                                                                                     |                                                                                                                                                                                           |  |
|---|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | Question<br>(ii) | Answer<br>$ \frac{du}{dx} + \frac{2u}{x} = \frac{1}{x^3} $ $ I = \exp\left(\int \frac{2}{x} dx\right) = e^{2\ln x} $ $ = x^2 $ $ \frac{d}{dx}(x^2u) = x^{-1} $ $ x^2u = \ln x + A $ $ u = (\ln x + A)/x^2 $ $ y = x^2/(\ln x + A) $ $ x = 1, y = 1 \Rightarrow 1 = \frac{1}{0+A} \Rightarrow A = 1 $ $ y = \frac{x^2}{\ln x + 1} $ | M1<br>A1<br>M1<br>A1<br>M1<br>M1<br>A1 | Guidance $e^{k \ln x}$ for LHS, multiply and recognise derivativefor y = reciprocal of 'their u'oe without fractions within fractions        | incorrect IF means no further marks<br>can be gained<br>if RHS is not multiplied by IF then no<br>further marks can be gained<br>or = $lnkx$<br>or $k = e$<br>or $y = \frac{x^2}{\ln ex}$ |  |
| 4 | (i)<br>(ii)      | $\forall n, 1n = n1 = n \text{ so } 1 \text{ is identity}$<br>But not all integers have an inverse, e.g.<br>$2n \neq 1$ for any $n$ $\{-1,1\}$<br>Demonstrates closure,<br>references associativity<br>references identity<br>$(-1)^{-1} = -1 \pmod{1^{-1}} = 1$ so inverses                                                       | [7]<br>M1<br>A1<br>B1*<br>*B2<br>[3]   | Identify identity<br>Complete argument (example or general)<br>without contradiction<br>B1 for any two of these<br>Dep on 1 <sup>st</sup> B1 | can be implicit for M1                                                                                                                                                                    |  |

| Question |     | Answer                                                                                                                           | Marks       | Guidance                                                 |                                                                                                       |  |
|----------|-----|----------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| 5        |     | AE: $\lambda^2 + 2\lambda + 10 = 0$<br>$\lambda = -1 \pm 3i$                                                                     | B1<br>B1    |                                                          |                                                                                                       |  |
|          |     | CF: $e^{-x}(A\cos 3x + B\sin 3x)$<br>PI: $y = a\cos x + b\sin x$                                                                 | B1ft<br>B1  | condone $Ae^{(-1+3i)x} + Be^{(-1-3i)x}$                  | ft on complex $\lambda$ only<br>trial function $y = a \cos x$ scores max<br>of B0 M1 M0 at this stage |  |
|          |     | $y' = -a \sin x + b \cos x$<br>$y'' = -a \cos x - b \sin x$<br>In DE: $-a \cos x - b \sin x + 2(-a \sin x + b)$                  |             |                                                          |                                                                                                       |  |
|          |     | $b \cos x$ + 10( $a \cos x + b \sin x$ + 2( $a \sin x$ +<br>b cos x) + 10( $a \cos x + b \sin x$ ) = 85 cos x                    | M1*         | Differentiate twice and substitute                       |                                                                                                       |  |
|          |     | -a + 2b + 10a = 85-b - 2a + 10b = 0                                                                                              | M1*         | Compare coefficients                                     |                                                                                                       |  |
|          |     | a = 9, b = 2                                                                                                                     | A1          | PI correct                                               |                                                                                                       |  |
|          |     | GS: $y = 9\cos x + 2\sin x$<br>+ $e^{-x}(A\cos 3x + B\sin 3x)$                                                                   | *A1ft       | Their CF (of standard form) + their PI                   | dep on gaining both M1 marks                                                                          |  |
|          |     |                                                                                                                                  | [8]         |                                                          |                                                                                                       |  |
| 6        | (i) | $ \begin{pmatrix} 1\\2\\1 \end{pmatrix} \times \begin{pmatrix} 2\\1\\4 \end{pmatrix} = \begin{pmatrix} 7\\-2\\-3 \end{pmatrix} $ | M1A1        |                                                          |                                                                                                       |  |
|          |     | finds point on both planes                                                                                                       | B1          | e.g. (0,1,1)                                             | or $\left(\frac{7}{3}, \frac{1}{3}, 0\right)$ or $\left(\frac{7}{2}, 0, -\frac{1}{2}\right)$          |  |
|          |     | $\frac{x}{-7} = \frac{y-1}{2} = \frac{z-1}{3}$                                                                                   | A1<br>[4]   | oe                                                       |                                                                                                       |  |
|          | ALT | x + 2y + z = 3<br>2x + y + 4z = 5                                                                                                |             |                                                          |                                                                                                       |  |
|          |     | 3x + 7z = 7                                                                                                                      | M1<br>A1    | Attempts to find at least 1 equation 2 correct equations |                                                                                                       |  |
|          |     | 2x + 7y = 7                                                                                                                      |             |                                                          | or $3y - 2z = 1$                                                                                      |  |
|          |     | $\frac{x}{-7} = \frac{y-1}{2} = \frac{z-1}{3}$                                                                                   | M1A1<br>[4] | oe of the form $f(x) = g(y) = h(z)$                      |                                                                                                       |  |

| Q | uestion | Answer                                                                                                                                                                                                                     | Marks           | Guidance                                                                                                                      |                                                      |
|---|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|   | (ii)    | $\begin{pmatrix} -7\\2\\3 \end{pmatrix} \cdot \begin{pmatrix} 1\\5\\-1 \end{pmatrix} = -7 + 10 - 3 = 0$ $\Rightarrow l \parallel \Pi_3$                                                                                    | M1<br>A1        | For scalar product, either shows method or<br>gives answer of zero<br>for A1 must have working out line for scalar<br>product |                                                      |
|   | ALT     | $(0, 1, 1) \text{ is on line, but} \begin{pmatrix} 0\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\5\\-1 \end{pmatrix} = 4 \neq 1$<br>so not on plane<br>$x + 5y - z = 1$ $7\lambda + 5(1 - 2\lambda) - (1 - 3\lambda) = 1$ | B1 [3]<br>M1A1  |                                                                                                                               |                                                      |
|   |         | $\Rightarrow$ 4 = 1 inconsistent, so l is parallel and not on plane                                                                                                                                                        | A1              |                                                                                                                               |                                                      |
|   | (iii)   | $2 + 2 \times 0 + 1 = 3$ (so on $\Pi_1$ )                                                                                                                                                                                  | [3]             |                                                                                                                               | must show working for at least one plane             |
|   |         | $\begin{pmatrix} 2\\0\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\5\\-1 \end{pmatrix} = 1 \text{ (so on } \Pi_3\text{)}$                                                                                                     | B1              | Verify both                                                                                                                   |                                                      |
|   |         | Line has equation $\mathbf{r} = \begin{pmatrix} 2\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} -7\\2\\3 \end{pmatrix}$                                                                                                    | M1<br>A1<br>[3] | oe vector form<br>in cartesian form M1 only                                                                                   | if cross product calculated incorrectly then M0A0    |
| 7 | (i)     | $\cos 6\theta + i \sin 6\theta = (\cos \theta + i \sin \theta)^6$                                                                                                                                                          | B1              | Use de Moivre                                                                                                                 | or $\sin 6\theta = Im(\cos \theta + i\sin \theta)^6$ |
|   |         | $= \cos^{6} \theta + 6i \sin \theta \cos^{5} \theta - 15 \sin^{2} \theta \cos^{4} \theta - 20i \sin^{3} \theta \cos^{3} \theta + 15 \sin^{4} \theta \cos^{2} \theta + 6i \sin^{5} \theta \cos \theta - \sin^{6} \theta$    | B1              | All terms correct                                                                                                             |                                                      |
|   |         | $\sin 6\theta = 6 \sin \theta \cos^5 \theta - 20 \sin^3 \theta \cos^3 \theta + 6 \sin^5 \theta \cos \theta$                                                                                                                | M1              | Compare imaginary parts                                                                                                       |                                                      |
|   |         | $= \cos\theta (6\sin\theta (1 - \sin^2\theta)^2 - 20\sin^3\theta (1 - \sin^2\theta) + 6\sin^5\theta)$                                                                                                                      | M1              | Take out factor of $\cos \theta$ and give other factor<br>in terms of $\sin \theta$ only                                      |                                                      |
|   |         | $= \cos\theta (32\sin^5\theta - 32\sin^3\theta + 6\sin\theta)$                                                                                                                                                             | A1<br>[5]       | <b>ag</b> Convincingly shown, having been explicit about taking imaginary parts                                               | must have $\sin 6\theta = \cdots$ 'final line'       |

| Question | Answer                                                                                                                                                                                                                 | Marks          | Guidance                                                                                                                                                     |                                                                                           |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| (ii)     | $\frac{\sin 6\theta}{\sin 2\theta} = \frac{\cos \theta (32 \sin^5 \theta - 32 \sin^3 \theta + 6 \sin \theta)}{2 \sin \theta \cos \theta}$ $= 16 \sin^4 \theta - 16 \sin^2 \theta + 3$ $= 4(2 \sin^2 \theta - 1)^2 - 1$ | M1<br>M1<br>A1 | Complete the square                                                                                                                                          | <b>M1A1</b> for showing stationary points occur when $sin^2\theta = 0,1$ or $\frac{1}{2}$ |
|          | $\begin{vmatrix} \therefore \frac{\sin 6\theta}{\sin 2\theta} \ge -1 \\ 0 \le 2 \sin^2 \theta \le 2 \end{vmatrix}$                                                                                                     | M1             | deduces lower bound                                                                                                                                          | if using calculus, must convince for<br>nature of stationary points for each M1<br>here   |
|          | $\therefore (2\sin^2\theta - 1)^2 \le 1$                                                                                                                                                                               | M1             | deduces upper bound                                                                                                                                          | can omit line 1 or 2 from the workings<br>here, but not for final A mark                  |
|          | $\Rightarrow -1 \le \frac{\sin 6\theta}{\sin 2\theta} \le 3$                                                                                                                                                           |                | <b>SC</b> if none of marks 2 to 5 (M1A1M1M1)<br>gained then <b>SC M1A1</b> for any valid method<br>of deducing upper bound, and similarly for<br>lower bound |                                                                                           |
|          | But upper bound attained $\Rightarrow \sin^2 \theta = 0 \text{ or } 1$<br>$\Rightarrow \sin 2\theta = 0$                                                                                                               | M1             | Dep on showing valid method for UB<=3                                                                                                                        | Or independent proof that not equal to 3                                                  |
|          | So $\sin 2\theta \neq 0 \Rightarrow -1 \le \frac{\sin 6\theta}{\sin 2\theta} < 3$                                                                                                                                      | A1 [7]         | full convincing overall argument                                                                                                                             |                                                                                           |

| ( | Question | n Answer                                                  | Marks | Guidance                                                |  |
|---|----------|-----------------------------------------------------------|-------|---------------------------------------------------------|--|
| 8 | (i)      | $ba = a^n \Rightarrow b = a^{n-1}$                        | M1    |                                                         |  |
|   |          | But these are distinct elements so $ba \neq a^n$          | A1    |                                                         |  |
|   |          |                                                           | [2]   |                                                         |  |
|   | (ii)     | $ba = a^2b$                                               |       |                                                         |  |
|   |          | $\Rightarrow a^2 b a = a^4 b$                             |       |                                                         |  |
|   |          | $\Rightarrow a^2ba = b$                                   | M1    | or $b = a^2 b a^3$ , $a = b a^2 b$ , $a^2 = b a b$ or   |  |
|   |          |                                                           | IVIII | $b = ba^2$                                              |  |
|   |          | $\Rightarrow a^2 b a^4 = b a^3$                           |       |                                                         |  |
|   |          | $\Rightarrow a^2b = ba^3$                                 |       |                                                         |  |
|   |          | $\Rightarrow ba = ba^3$                                   |       |                                                         |  |
|   |          | $\Rightarrow e = a^2$                                     | M1    | validly reach any equality which gives 2                |  |
|   |          |                                                           |       | distinct elements of the group as equal                 |  |
|   |          | Which is false, hence $ba \neq a^2b$                      | A1    | Complete argument                                       |  |
|   |          | If $ba = ab$ then (all element pairs would have           |       |                                                         |  |
|   |          | to be commutative and so) G would be                      | M1    | Do not award for G non-abelian $\Rightarrow ba \neq ab$ |  |
|   |          | abelian.                                                  | N (1  |                                                         |  |
|   |          | If $ba = b$ then $a = e$ so $ba \neq b$ .                 | M1    |                                                         |  |
|   |          | So, by elimination of other possibilities,<br>$ba = a^3b$ | A1    | Dependent on all previous marks                         |  |
|   |          | $ba = a^{-}b^{-}$                                         | [6]   | Dependent on an previous marks                          |  |
|   | (iii)    | $ba^2 = baa = a^3ba$                                      | M1    | Use previous result                                     |  |
|   | (111)    | $= a^3 a^3 b = a^2 b$                                     | A1    | Complete argument                                       |  |
|   |          |                                                           | [2]   |                                                         |  |

| Question | Answer                                                 | Marks          | Guidance                                                                 |  |
|----------|--------------------------------------------------------|----------------|--------------------------------------------------------------------------|--|
| (iv)     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | B1             | All correct                                                              |  |
|          | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | B1<br>M1<br>A1 | Correct elements<br>At least 12 out of 16 entries correct<br>All correct |  |
|          | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | B1<br>M1<br>A1 | Correct elements<br>At least 12 out of 16 entries correct<br>All correct |  |
|          | Total                                                  | 72             |                                                                          |  |